Kinetic and thermodynamic parameters for tRNA binding to the ribosome and for the translocation reaction.

نویسندگان

  • S Schilling-Bartetzko
  • A Bartetzko
  • K H Nierhaus
چکیده

Kinetic analyses of tRNA binding to the ribosome and of the translocation reaction showed the following results. 1) The activation energy for the P site binding of AcPhe-tRNA to poly(U)-programmed ribosomes is relatively high (Ea = 72 kJ mol-1; 15 mM Mg2+). If only the P site is occupied with deacylated tRNA(Phe), then the E site can be filled more easily with tRNA(Phe) (no activation energy measurable) than the A site with AcPhe-tRNA (Ea = 47 kJ mol-1; 15 mM Mg2+). 2) A ribosome with blocked P and E sites represents a standard state of the elongation cycle, in contrast to a ribosome with only a filled P site. The two states differ in that AcPhe-tRNA binding to the A site of a ribosome with prefilled P and E sites requires much higher activation energy (87 versus 47 kJ mol-1). The latter reaction simulates the allosteric transition from the post- to the pretranslocational state, whereby the tRNA(Phe) is released from the E site upon occupation of the A site (Rheinberger, H.-J., and Nierhaus, K. H. (1986) J. Biol. Chem. 261, 9133-9139). The reversed transition from the pre- to the posttranslocational state (translocation reaction) requires about the same activation energy (90 kJ mol-1). 3) Both elongation factors EF-Tu and EF-G drastically reduce the respective activation energies. 4) The rate of the A site occupation is slower than the rate of translocation in the presence of the respective elongation factors. The data suggest that the A site occupation rather than, as generally assumed, the translocation reaction is the rate-limiting step of the elongation cycle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological Applications of Isothermal Titration Calorimetry

     Most of the biological phenomena are influenced by intermolecular recognition and interaction. Thus, understanding the thermodynamics of biomacromolecule ligand interaction is a very interesting area in biochemistry and biotechnology. One of the most powerful techniques to obtain precise information about the energetics of (bio) molecules binding to other biological macromolecules is isoth...

متن کامل

Kinetic and thermodynamic study of substituent effect on the Claisen rearrangement of para-substituted SI aryl ether: a Hammett study via DFT

In order to find the susceptibility of the Claisen rearrangement and next proton shift reaction of ally) aryl etherto the substiment effects in pan position, the kinetic and the:rmodynamie parameters are calculated at The33 LTP level using 6-3110. b asis set. The calculated activation energies for the rearrangements and protonshift reactions are around 3133 kcaUmol and 52.16 kcal/mol, nap.. liv...

متن کامل

A Thermodynamic Study on Nano-graphene Interaction with the Amino acid Phenylalanine in Acidic and Alkaline conditions at different temperatures

The project is comparing two types of calculation derived graphene. Which one of these carbon graphene linked to the phenylalanine amino acid from the acidic site (-COOH) and another from the base site (-NH2). For this purpose, at first the material contained in the both sides of reaction were geometrically optimized, then the calculation of the thermodynamic parameters performed on ...

متن کامل

Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation.

Translocation, a coordinated movement of two tRNAs together with mRNA on the ribosome, is catalyzed by elongation factor G (EF-G). The reaction is accompanied by conformational rearrangements of the ribosome that are, as yet, not well characterized. Here, we analyze those rearrangements by restricting the conformational flexibility of the ribosome by antibiotics binding to specific sites of the...

متن کامل

Role and timing of GTP binding and hydrolysis during EF-G-dependent tRNA translocation on the ribosome.

The translocation of tRNA and mRNA through the ribosome is promoted by elongation factor G (EF-G), a GTPase that hydrolyzes GTP during the reaction. Recently, it was reported that, in contrast to previous observations, the affinity of EF-G was much weaker for GTP than for GDP and that ribosome-catalyzed GDP-GTP exchange would be required for translocation [Zavialov AV, Hauryliuk VV, Ehrenberg M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 267 7  شماره 

صفحات  -

تاریخ انتشار 1992